Exercises

Vectors and Matrices

Exercise 1. Consider the vectors $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$.

Compute:

- a) 3u + 2v w
- b) $w (e_1 e_2) + e_3$
- c) $\frac{1}{2}(u-1) + 4(v-w)$

Note: e_i is the i-th unit vector and 1 is the all-one-vector.

Exercise 2. Given the vectors $\mathbf{g} = \begin{bmatrix} 1\\3\\-2 \end{bmatrix}$ and $\mathbf{h} = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$ and the matrices $A = \begin{bmatrix} 5 & -1 & 2\\-8 & 3 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -5 & -2\\-10 & -1 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 6 & 8\\0 & 2 \end{bmatrix}$

compute the following expressions (if possible):

- a) A + B
- b) AB, AB^{\top} , BA^{\top}
- c) A1, $e_2^{\top}A$ (e_i is the *i*-th unit-vector and 1 is the all-one vector of appropriate size)
- d) $\mathbf{g}^{\top} \mathbf{A}^{\top}$, $\mathbf{g}^{\top} \mathbf{h}$, $\mathbf{g} \mathbf{h}^{\top}$

Exercise 3. A vector v is called **normalized** if ||v|| = 1. Two vectors v, w are called **orthogonal** if $\langle v, w \rangle = 0$. Two vectors v, w are called **orthonormal** if they are normalized and orthogonal.

- a) For which $a \in \mathbb{R}$ is $(a, -3a)^{\top}$ a normalized vector?
- b) Find all vectors that are orthogonal to $\mathbf{u}^{\top} = (5, -1)$.
- c) Normalize the vectors $v = (-2, 4, -5, 2)^{\top}$, $w = (2, -1, 3)^{\top}$.
- d) Find all vectors that are orthonormal wrt. $(2, -3)^{\top}$.

Exercise 4. Assume some company produces three intermediate products I_1 , I_2 , I_3 from the four different resources R_1 , R_2 , R_3 , R_4 and finally three end products P_1 , P_2 , P_3 from the intermediate products.

Resource	Used resources per intermediate product			I-Prod.	Used intermediate products per end product P_j		
D		12	13		P ₁	P ₂	P ₃
К ₁	0	3	1	- Iı	1	2	1
R_2	1	2	2	-, T	0	2	2
R ₃	3	1	1	1 ₂	0	5	2
$\mathbf{R}_{4}^{\mathbf{J}}$	2	0	2	I_3	4	1	2

1. Draw a scheme that visualizes this 2-step process.

2. Assume the company wants to produce 50 units of P_1 , 100 units of P_2 , and 200 units of P_3 . How many intermediate products must be produced and how many resources must be bought?