Exercises

Vectors and Matrices

Exercise 1. Consider the vectors $u=\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right], v=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$, and $w=\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]$. Compute:
a) $3 u+2 v-w$
b) $w-\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)+\mathbf{e}_{3}$
c) $\frac{1}{2}(u-1)+4(v-w)$

Note: \mathbf{e}_{i} is the \boldsymbol{i}-th unit vector and $\mathbf{1}$ is the all-one-vector.
Exercise 2. Given the vectors $\mathbf{g}=\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\mathbf{h}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$ and the matrices

$$
A=\left[\begin{array}{ccc}
5 & -1 & 2 \\
-8 & 3 & 7
\end{array}\right], B=\left[\begin{array}{ccc}
4 & -5 & -2 \\
-10 & -1 & -3
\end{array}\right], C=\left[\begin{array}{ll}
6 & 8 \\
0 & 2
\end{array}\right]
$$

compute the following expressions (if possible):
a) $A+B$
b) $A B, \quad A B^{\top}, \quad B A^{\top}$
c) $A 1, e_{2}^{\top} A$
(\mathbf{e}_{i} is the \mathfrak{i}-th unit-vector and $\mathbf{1}$ is the all-one vector of appropriate size)
d) $\mathbf{g}^{\top} A^{\top}, \quad g^{\top} \mathbf{h}, \quad \mathbf{g} \mathbf{h}^{\top}$

Exercise 3. A vector v is called normalized if $\|v\|=1$. Two vectors v, w are called orthogonal if $\langle v, w\rangle=0$. Two vectors v, w are called orthonormal if they are normalized and orthogonal.
a) For which $a \in \mathbb{R}$ is $(a,-3 a)^{\top}$ a normalized vector?
b) Find all vectors that are orthogonal to $u^{\top}=(5,-1)$.
c) Normalize the vectors $v=(-2,4,-5,2)^{\top}, w=(2,-1,3)^{\top}$.
d) Find all vectors that are orthonormal wrt. $(2,-3)^{\top}$.

Exercise 4. Assume some company produces three intermediate products $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ from the four different resources $R_{1}, R_{2}, R_{3}, R_{4}$ and finally three end products P_{1}, P_{2}, P_{3} from the intermediate products.

Resource	Used resources per		I-Prod.	Used intermediate products				
	intermediate product				per end product P_{j}			
	I_{1}	I_{2}	I_{3}			P_{1}	P_{2}	P_{3}
R_{1}	0	3	1		I_{1}	1	2	1
R_{2}	1	2	2		I_{2}	0	3	2
R_{3}	3	1	1		I_{3}	4	1	2
R_{4}	2	0	2					

1. Draw a scheme that visualizes this 2-step process.
2. Assume the company wants to produce 50 units of $P_{1}, 100$ units of P_{2}, and 200 units of P_{3}. How many intermediate products must be produced and how many resources must be bought?
